Перевод: с английского на все языки

со всех языков на английский

the nature of gases

  • 1 (the) nature of electricity

    the nature of electricity (of gases, of fire) природа электричества (газа, огня)

    English-Russian combinatory dictionary > (the) nature of electricity

  • 2 nature

    nature [ˊneɪtʃə] n
    1) су́щность, основно́е сво́йство, хара́ктер, приро́да;

    the nature of gases сво́йства га́зов

    N.'s engineering рабо́та сил приро́ды

    3) род, сорт; класс; тип;

    it was in the nature of a command э́то бы́ло не́что вро́де приказа́ния

    ;

    things of this nature подо́бные ве́щи

    4) нату́ра, хара́ктер, нрав;

    good nature доброду́шие

    ;

    ill nature плохо́й хара́ктер

    5) нату́ра; естество́; органи́зм;

    against nature противоесте́ственный

    ;

    by nature по приро́де, от рожде́ния

    ;

    by ( или in, from) the nature of things ( или of the case) неизбе́жно

    ;

    in the course of nature при есте́ственном хо́де веще́й

    6) приро́дное, первобы́тное состоя́ние
    7) иск. нату́ра;

    to draw from nature рисова́ть с нату́ры

    to pay one's debt to nature отда́ть дань приро́де, умере́ть

    ;

    to ease nature отпра́вить есте́ственные на́добности

    Англо-русский словарь Мюллера > nature

  • 3 nature

    noun
    1) Natur, die

    back to nature — zurück zur Natur

    2) (essential qualities) Beschaffenheit, die
    3) (kind, sort) Art, die

    things of this nature — derartiges; Dinge dieser Art

    it's in the nature of a commandes hat Befehlscharakter

    4) (character) [Wesens]art, die; Wesen, das

    be of or have a placid nature — eine ruhige Art haben

    it's only human nature to... — es ist nur menschlich,... zu...

    * * *
    ['nei ə]
    1) (the physical world, eg trees, plants, animals, mountains, rivers etc, or the power which made them: the beauty of nature; the forces of nature; the study of nature.) die Natur
    2) (the qualities born in a person; personality: She has a generous nature.) die Natur
    3) (quality; what something is or consists of: What is the nature of your work?) die Beschaffenheit
    4) (a kind, type etc: bankers and other people of that nature.) die Art
    - academic.ru/49186/-natured">-natured
    - in the nature of
    * * *
    na·ture
    [ˈneɪtʃəʳ, AM -ɚ]
    I. n no pl
    1. no art (natural environment) Natur f
    to get [or go] back to \nature zu einer natürlichen Lebensweise zurückkehren
    in \nature in der Natur
    to let \nature [or allow \nature to] take its course der Natur ihren Lauf lassen
    the laws of \nature die Gesetze der Natur
    2. (innate qualities) Natur f, Art f, Beschaffenheit f
    what is the \nature of your problem? worum handelt es sich bei Ihrem Problem?
    it's the \nature of linen to crumple easily Leinen knittert von Natur aus leicht
    I have a problem of a rather delicate \nature ich habe da ein ziemlich heikles Problem
    the \nature of a crime/an event/the punishment die Art eines Verbrechens/Ereignisses/einer Strafe
    things of this \nature Dinge dieser Art
    it's in the \nature of things das liegt in der Natur der Sache
    by \nature von Natur aus
    3. (character) Naturell nt, Art f
    sb's better \nature das Gute in jdm
    to be in sb's \nature jds Art sein
    it's not really in her \nature to be aggressive es ist eigentlich nicht ihre Art, aggressiv zu sein
    4.
    it's the \nature of the beast das liegt in der Natur der Sache
    the call of \nature ( euph) der Ruf der Natur euph
    \nature's calling die Natur ruft
    II. n modifier (book, programme) Natur-
    * * *
    ['neɪtʃə(r)]
    n
    1) Natur f

    against nature —

    in a state of nature ( = uncivilized inf : = naked ) to return to nature (person) (garden) —, inf : = naked ) im Naturzustand to return to nature (person) zur Natur zurückkehren (garden) in den Naturzustand zurückkehren

    2) (of person) Wesen(sart f) nt, Natur f

    it is in the nature of young people to want to traveles liegt im Wesen junger Menschen, reisen zu wollen

    3) (of object, material) Beschaffenheit f

    the nature of the case is such... — der Fall liegt so...

    cash is, by its (very) nature, easy to steal — Geld ist aufgrund seiner Beschaffenheit leicht zu stehlen

    4) (= type, sort) Art f

    something in the nature of an apologyso etwas wie eine Entschuldigung

    ... or something of that nature —... oder etwas in der Art

    * * *
    nature [ˈneıtʃə(r)] s
    1. allg Natur f:
    a) Schöpfung f, Weltall n
    b) auch Nature Naturkräfte pl: course A 9, debt 1
    c) natürliche Landschaft:
    the beauty of nature die Schönheit der Natur
    d) Naturzustand m:
    back to nature zurück zur Natur;
    nature cure Naturheilverfahren n; state A 4
    e) Konstitution f (des Menschen etc):
    nature calls umg ich muss mal; ease B 3, relieve A 1
    f) Wirklichkeit f:
    from nature MAL nach der Natur; true A 4
    2. Natur f:
    a) Charakter m, (Eigen)Art f, Wesen n, Veranlagung f:
    by nature von Natur (aus);
    it is (in) her nature es liegt in ihrem Wesen; alien A 6, human A 1, second1 A 1
    b) (Gemüts)Art f, Naturell n, Wesen n:
    of good nature gutherzig, -mütig
    c) koll natürliche Triebe pl oder Instinkte pl
    3. Art f, Sorte f:
    he’s an engineer or sth of that nature er ist Ingenieur od so etwas Ähnliches;
    things of this nature Dinge dieser Art;
    nature of the business WIRTSCH Gegenstand m der Firma;
    of a business nature geschäftlicher Art;
    of a grave nature ernster Natur;
    it is in the nature of things es liegt in der Natur der Sache
    4. (natürliche) Beschaffenheit:
    * * *
    noun
    1) Natur, die
    2) (essential qualities) Beschaffenheit, die
    3) (kind, sort) Art, die

    things of this nature — derartiges; Dinge dieser Art

    4) (character) [Wesens]art, die; Wesen, das

    be of or have a placid nature — eine ruhige Art haben

    it's only human nature to... — es ist nur menschlich,... zu...

    * * *
    n.
    Beschaffenheit f.
    Charakter m.
    Natur -en f.
    Natur -en m.

    English-german dictionary > nature

  • 4 nature

    1 ბუნება
    ●●it is in the nature of things ჩვეულებრივი ამბავია
    2 ხასიათი, ზნე
    3 სახე, ტიპი
    ill-natured ცუდი ხასიათის მქონე, ჭიჭყინა
    good-natured გულკეთილი; კარგი ხასიათისა, გულთბილი
    he is of a solitary nature მარტო ყოფნა / განმარტოება უყვარს
    lying is foreign to his nature ტყუილის თქმა მისთვის უცხოა / მას არ ახასიათებს
    he has a flexible nature დამყოლი / რბილი ხასიათი აქვს

    English-Georgian dictionary > nature

  • 5 gas

    English-Georgian dictionary > gas

  • 6 arc-proof low voltage switchgear and controlgear assembly

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof low voltage switchgear and controlgear assembly

  • 7 arc-proof switchboard

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof switchboard

  • 8 arc-proof switchgear

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-proof switchgear

  • 9 arc-resistant switchgear

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > arc-resistant switchgear

  • 10 internal arc-proof switchgear and controlgear assemblу

    1. НКУ с защитой от воздействия электрической дуги

     

    НКУ с защитой от воздействия электрической дуги
    комплектное устройство с защитой от электрической дуги
    низковольтное комплектное устройство с защитой от электрической дуги
    НКУ распределения и управления с защитой от электрической дуги
    -
    [Интент]

    EN

    arc-resistant switchgear
    A type of switchgear design which is designed to withstand the effects of an internal arcing fault, without causing harm to personnel who are located in defined areas. It is not intended to withstand these internal arcing fault without possibly causing physical damage to the structure and/or components, but often the physical damage is less with an arc-resistant design.

    There are three classes of protection:
    Type A - eliminates the emission of gases and particles from the front of the switchgear during an internal arcing fault,
    Type B - eliminates the emission of gases and particles from the front and sides of the switchgear during an internal arcing fault,
    Type C - eliminates the emission of gases and particles from the front and sides of the switchgear, from between compartments within the same cell, and between adjacent cells during an internal arcing fault.

    Arc-resistant switchgear has traditionally been metal-clad, but the basic concept could also be applied to other types of switchgear as well.

    arc-proof switchgear
    An incorrect term. Please refer to arc-resistant switchgear
    [Schneider Electric]
    [ http://electrical-engineering-portal.com/glossary-of-medium-voltage-switchgear-terms]

    Параллельные тексты EN-RU

    If the electric arc occurs inside LV switchgear it generates internal overpressures and results in local overheatings which may cause high mechanical and thermal stresses in the equipment.

    Besides, the involved materials can generate hot decomposition products, gases or fumes, which, due to the overpressure, are almost always ejected to the outside of the enclosure thus jeopardizing the operator safety.

    The European Directive 2006/95/EC states the fundamental safety requirements for low voltage electric materials (from 50 V to 1000 V in alternating current, from 75 V to 1500 V in continuos current) to be put on the market within the European Community.

    Among the essential safety requirements defined by this Directive particular importance is given to the need of taking technical measures to prevent “temperature rises, electric arcs or radiations which may result in hazards” from occurring.

    This aspect has always been highly considered for apparatus, but it has been wrongly neglected for electrical switchgear and only in the last 10-15 years it has been catching on both at Italian as well as at international level.

    Safety for the operator and for the installation in case of arcing inside LV switchgear can be obtained through three different design philosophies:
    1. assemblies mechanically capable of withstanding the electric arc (passive protection)
    2. assemblies equipped with devices limiting the effects of internal arcing (active protection)
    3. assemblies equipped with current limiting circuitbreakers.

    These three solutions (also combined together) have found a remakable development in the industrial field and have been successfully applied by the main manufacturers of LV switchgear and controlgear assemblies.

    As it can be seen hereafter by examining the first two solutions, an “active” protection against arc faults is intrinsecally more complex than a “passive” one.

    This because of the presence of additional electromechanical/ electronic devices5 which limit the arcing effects and which, by their nature, may be subject to faults or not-tripping.

    [ABB]

    Дуга, возникшая внутри НКУ, создает внутреннее избыточное давление и вызывает локальный перегрев, что может привести к воздействию на оборудование значительного механического напряжения и перепада температур.

    Кроме того, под воздействием дуги различные материалы разлагаются на продукты, имеющие высокую температуру, в том числе газы и дым, которые почти всегда вырываются из оболочки НКУ под высоким давлением, подвергая опасности оперативный персонал.

    Европейская директива 2006/95/EC определяет основные требования безопасности для низковольтного (от 50 до 1000 В переменного тока и от 75 до 1500 В постоянного тока) оборудования поставляемого на рынок Европейского Сообщества.

    Одно из основных требований безопасности, определяемое данной директивой как наиболее важное, заключается в необходимости предпринять технические меры для предотвращения "подъема температуры, возникновения электрической дуги или излучения", которые могут причинить ущерб.

    Данная проблема всегда учитывалась при создании различных аппаратов, но незаслуженно игнорировалась при разработке электрических комплектных устройств, и только в последние 10-15 лет ей стали уделять должное внимание как в Италии, так и во всем мире.

    При возникновении электрической дуги внутри НКУ безопасность оператора и электроустановки обеспечивается тремя способами:
    1. Конструкция НКУ должна выдерживать механические воздействия, возникающие при горении электрической дуги (пассивная защита).
    2. НКУ должно быть оснащено устройствами, ограничивающими воздействие электрической дуги (активная защита)
    3. НКУ должны быть оснащены токоограничивающими автоматическими выключателями.

    Указанные три способа (применяемые совместно) получили дальнейшее развитие в промышленности и успешно применяются основными изготовителями НКУ распределения и управления.

    Как будет показано далее при рассмотрении первых двух способов, активная защита от дуговых» неисправностей является более сложной, чем пассивная защита.

    Это объясняется необходимостью использования дополнительных электромеханических или электронных устройств, задачей которых является ограничение воздействий дуги и которые сами могут оказаться неисправными и не сработать.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > internal arc-proof switchgear and controlgear assemblу

  • 11 Crookes, Sir William

    SUBJECT AREA: Electricity
    [br]
    b. 17 June 1832 London, England
    d. 4 April 1919 London, England
    [br]
    English chemist and physicist who carried out studies of electrical discharges and cathode rays in rarefied gases, leading to the development of the cathode ray tube; discoverer of the element thallium and the principle of the Crookes radiometer.
    [br]
    Crookes entered the Royal College of Chemistry at the age of 15, and from 1850 to 1854 held the appointment of Assistant at the college. In 1854 he became Superintendent of the Meteorological Department at the Radcliffe Observatory in Oxford. He moved to a post at the College of Science in Chester the following year. Soon after this he inherited a large fortune and set up his own private laboratory in London. There he studied the nature of electrical discharges in gases at low pressure and discovered the dark space (later named after him) that surrounds the negative electrode, or cathode. He also established that the rays produced in the process (subsequently shown by J.J.Thompson to be a stream of electrons) not only travelled in straight lines, but were also capable of producing heat and/or light upon impact with suitable anode materials. Using a variety of new methods to investigate these "cathode" rays, he applied them to the spectral analysis of compounds of selenium and, as a result, in 1861 he discovered the element thallium, finally establishing its atomic weight in 1873. Following his discovery of thallium, he became involved in two main lines of research: the properties of rarified gases, and the investigation of the elements of the "rare earths". It was also during these experiments that he discovered the principle of the Crookes radiometer, a device in which light is converted into rotational motion and which used to be found frequently in the shop windows of English opticians. Also among the fruits of this work were the Crookes tubes and the development of spectacle lenses with differential ranges of radiational absorption. In the 1870s he became interested in spiritualism and acquired a reputation for his studies of psychic phenomena, but at the turn of the century he returned to traditional scientific investigations. In 1892 he wrote about the possibility of wireless telegraphy. His work in the field of radioactivity led to the invention of the spinthariscope, an early type of detector of alpha particles. In 1900 he undertook investigations into uranium which led to the study of scintillation, an important tool in the study of radioactivity.
    While the theoretical basis of his work has not stood the test of time, his material discoveries, observations and investigations of new facts formed a basis on which others such as J.J. Thomson were to develop subatomic theory. His later involvement in the investigation of spiritualism led to much criticism, but could be justified on the basis of a belief in the duty to investigate all phenomena.
    [br]
    Principal Honours and Distinctions
    Knighted 1897. Order of Merit 1910. FRS 1863. President, Royal Society 1913–15. Honorary LLD Birmingham. Honorary DSc Oxon, Cambridge, Sheffield, Durham, Ireland and Cape of Good Hope.
    Bibliography
    1874, On Attraction and Repulsion Resulting from Radiation.
    1874, "Researches in the phenomenon of spiritualism", Society of Metaphysics; reprinted in facsimile, 1986.
    Further Reading
    E.E.Fournier D'Albe, 1923, Life of Sir William Crookes. Who Was Who II, 1916–28, London: A. \& C. Black. T.I.Williams, 1969, A Biographical Dictionary of Scientists. See also Braun, Karl Ferdinand.
    KF / MG

    Biographical history of technology > Crookes, Sir William

  • 12 Davy, Sir Humphry

    [br]
    b. 17 December 1778 Penzance, Cornwall, England
    d. 29 May 1829 Geneva, Switzerland
    [br]
    English chemist, discoverer of the alkali and alkaline earth metals and the halogens, inventor of the miner's safety lamp.
    [br]
    Educated at the Latin School at Penzance and from 1792 at Truro Grammar School, Davy was apprenticed to a surgeon in Penzance. In 1797 he began to teach himself chemistry by reading, among other works, Lavoisier's elementary treatise on chemistry. In 1798 Dr Thomas Beddoes of Bristol engaged him as assistant in setting up his Pneumatic Institution to pioneer the medical application of the newly discovered gases, especially oxygen.
    In 1799 he discovered the anaesthetic properties of nitrous oxide, discovered not long before by the chemist Joseph Priestley. He also noted its intoxicating qualities, on account of which it was dubbed "laughing-gas". Two years later Count Rumford, founder of the Royal Institution in 1800, appointed Davy Assistant Lecturer, and the following year Professor. His lecturing ability soon began to attract large audiences, making science both popular and fashionable.
    Davy was stimulated by Volta's invention of the voltaic pile, or electric battery, to construct one for himself in 1800. That enabled him to embark on the researches into electrochemistry by which is chiefly known. In 1807 he tried decomposing caustic soda and caustic potash, hitherto regarded as elements, by electrolysis and obtained the metals sodium and potassium. He went on to discover the metals barium, strontium, calcium and magnesium by the same means. Next, he turned his attention to chlorine, which was then regarded as an oxide in accordance with Lavoisier's theory that oxygen was the essential component of acids; Davy failed to decompose it, however, even with the aid of electricity and concluded that it was an element, thus disproving Lavoisier's view of the nature of acids. In 1812 Davy published his Elements of Chemical Philosophy, in which he presented his chemical ideas without, however, committing himself to the atomic theory, recently advanced by John Dalton.
    In 1813 Davy engaged Faraday as Assistant, perhaps his greatest service to science. In April 1815 Davy was asked to assist in the development of a miner's lamp which could be safely used in a firedamp (methane) laden atmosphere. The "Davy lamp", which emerged in January 1816, had its flame completely surrounded by a fine wire mesh; George Stephenson's lamp, based on a similar principle, had been introduced into the Northumberland pits several months earlier, and a bitter controversy as to priority of invention ensued, but it was Davy who was awarded the prize for inventing a successful safety lamp.
    In 1824 Davy was the first to suggest the possibility of conferring cathodic protection to the copper bottoms of naval vessels by the use of sacrificial electrodes. Zinc and iron were found to be equally effective in inhibiting corrosion, although the scheme was later abandoned when it was found that ships protected in this way were rapidly fouled by weeds and barnacles.
    [br]
    Principal Honours and Distinctions
    Knighted 1812. FRS 1803; President, Royal Society 1820. Royal Society Copley Medal 1805.
    Bibliography
    1812, Elements of Chemical Philosophy.
    1839–40, The Collected Works of Sir Humphry Davy, 9 vols, ed. John Davy, London.
    Further Reading
    J.Davy, 1836, Memoirs of the Life of Sir Humphry Davy, London (a classic biography). J.A.Paris, 1831, The Life of Sir Humphry Davy, London (a classic biography). H.Hartley, 1967, Humphry Davy, London (a more recent biography).
    J.Z.Fullmer, 1969, Cambridge, Mass, (a bibliography of Davy's works).
    ASD

    Biographical history of technology > Davy, Sir Humphry

  • 13 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 14 Thomson, Sir William, Lord Kelvin

    [br]
    b. 26 June 1824 Belfast, Ireland (now Northern Ireland)
    d. 17 December 1907 Largs, Scotland
    [br]
    Irish physicist and inventor who contributed to submarine telegraphy and instrumentation.
    [br]
    After education at Glasgow University and Peterhouse, Cambridge, a period of study in France gave Thomson an interest in experimental work and instrumentation. He became Professor of Natural Philosophy at Glasgow in 1846 and retained the position for the rest of his career, establishing the first teaching laboratory in Britain.
    Among his many contributions to science and engineering was his concept, introduced in 1848, of an "absolute" zero of temperature. Following on from the work of Joule, his investigations into the nature of heat led to the first successful liquefaction of gases such as hydrogen and helium, and later to the science of low-temperature physics.
    Cable telegraphy gave an impetus to the scientific measurement of electrical quantities, and for many years Thomson was a member of the British Association Committee formed in 1861 to consider electrical standards and to develop units; these are still in use. Thomson first became Scientific Adviser to the Atlantic Telegraph Company in 1857, sailing on the Agamemnon and Great Eastern during the cable-laying expeditions. He invented a mirror galvanometer and more importantly the siphon recorder, which, used as a very sensitive telegraph receiver, provided a permanent record of signals. He also laid down the design parameters of long submarine cables and discovered that the conductivity of copper was greatly affected by its purity. A major part of the success of the Atlantic cable in 1866 was due to Thomson, who received a knighthood for his contribution.
    Other instruments he designed included a quadrant electrostatic voltmeter to measure high voltages, and his "multi-cellular" instrument for low voltages. They could be used on alternating or direct current and were free from temperature errors. His balances for precision current measurement were widely used in standardizing laboratories.
    Thomson was a prolific writer of scientific papers on subjects across the whole spectrum of physics; between 1855 and 1866 he published some 110 papers, with a total during his life of over 600. In 1892 he was raised to the peerage as Baron Kelvin of Largs. By the time of his death he was looked upon as the "father" of British physics, but despite his outstanding achievements his later years were spent resisting change and progress.
    [br]
    Principal Honours and Distinctions
    Knighted 1866. Created Lord Kelvin of Largs 1892. FRS 1851. President, Royal Society 1890–4. An original member of the Order of Merit 1902. President, Society of Telegraph Engineers 1874. President, Institution of Electrical Engineers 1889 and 1907. Royal Society Royal Medal 1856, Copley Medal 1883.
    Bibliography
    1872, Reprints of Papers on Electrostatics and Magnetism, London; 1911, Mathematical and Physical Papers, 6 vols, Cambridge (collections of Thomson's papers).
    Further Reading
    Silvanus P.Thompson, 1910, The Life of William Thomson, Baron Kelvin of Largs, 2 vols, London (an uncritical biography).
    D.B.Wilson, 1987, Kelvin and Stokes: A Comparative Study in Victorian Physics, Bristol (provides a present-day commentary on all aspects of Thomson's work).
    J.G.Crowther, 1962, British Scientists of the 19th Century, London, pp. 199–257 (a short critical biography).
    GW

    Biographical history of technology > Thomson, Sir William, Lord Kelvin

  • 15 contamination

    1. контаминация
    2. инфицирование
    3. засорение
    4. загрязнение атмосферы
    5. загрязнение (в электробезопасности)
    6. загрязнение

     

    загрязнение
    Привнесение в природную или непосредственно в антропогенную среду или возникновение в ней новых, обычно не характерных для этой среды физических, химических или биологических агентов, или превышение в рассматриваемое время естественного среднемноголетнего уровня в пределах его крайних колебаний концентрации перечисленных агентов в среде, оказывающих вредное воздействие на человека, флору и фауну.
    [РД 01.120.00-КТН-228-06]

    загрязнение
    1 Директива ЕС 96/61/ЕЭС (от 24 сентября 1996 г., касающаяся единых мер предотвращения загрязнения и борьбы с ним, статья 2 (11).
    2 Объединенная группа экспертов ММО/ЮНЕСКО/ВМО/МАГАТЕ/ООН/ЮНПОС по научным аспектам изучения загрязнения морей.
    3 Конвенции о защите морской среды в районе Северо-Восточной Атлантики, Париж, 22 сентября 1992 г., статья 1, п. (d).
    d Конвенция о защите морской среды в районе Балтийского моря, 1992, (Хельсинская конвенция), статья 2, п. 1.
    [ ГОСТ Р ИСО 14050-99]

    Тематики

    EN

     

    загрязнение
    Присутствие инородного вещества: твердого, жидкого или газообразного (ионизированные газы), - которое может вызвать уменьшение диэлектрической прочности или поверхностного сопротивления.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]


    загрязнение
    Любое добавление инородных веществ, твердых, жидких или газообразных (ионизированных газов), которые могли бы уменьшить электрическую прочность изоляции или удельное сопротивление поверхности.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    EN

    pollution
    any condition of foreign matter, solid, liquid or gaseous (ionized gases), that may affect dielectric strength or surface resistivity
    [IEC 60947-1, ed. 5.0 (2007-06)]


    pollution
    any addition of foreign matter, solid, liquid or gaseous that can produce a permanent reduction of dielectric strength or surface resistivity of the insulation
    NOTE – Ionized gases of a temporary nature are not considered as to be a pollution.
    [IEV number 442-01-28]


    contamination
    the first is defined as area and the second as particulate. The first is caused by surface contaminants that cannot be removed by cleaning or are stained after cleaning. Those may be foreign matter on the surface of, for example a localized area that is smudged, stained, discoloured, mottled, etc., or large areas exhibiting a hazy or cloudy appearance resulting from a film of foreign materials
    [IEC 62276, ed. 1.0 (2005-05)]

    FR

    pollution
    tout apport de matériau étranger solide, liquide ou gazeux (gaz ionisés) qui peut entraîner une réduction de la rigidité diélectrique ou de la résistivité de la surface
    [IEC 60947-1, ed. 5.0 (2007-06)]


    pollution
    tout apport de matériau étranger solide, liquide ou gazeux qui peut entraîner une réduction permanente de la rigidité diélectrique ou de la résistivité de surface de l'isolation
    NOTE – Les gaz ionisés de nature fugace ne sont pas considérés comme une pollution.
    [IEV number 442-01-28]


     

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    загрязнение атмосферы
    Изменение состав атмосферы в результате наличия в ней примесей
    [ ГОСТ 17.2.1.04-77]
    Примечание
    При разработке НТД в области защиты атмосферного воздуха от антропогенного загрязнения рекомендуется применять термин "загрязнение окружающей среды" в ред. НИИ Атмосфера
    [Письмо НИИ Атмосфера № 14/33-07 от 15.01.03 г. «О терминах и определениях»]
    [Защита атмосферного воздуха от антропогенного загрязнения. Основные понятия, термины и определения (справочное пособие). Санкт-Петербург 2003 г.]

    Тематики

    EN

    DE

    • Luftverunreinigung, Vorgang

    FR

    • pollution d’air

     

    засорение
    Присутствие в товаре, месте хранения, транспортном средстве или контейнере вредных организмов или других подкарантинных материалов, не представляющее собой заражение (смотри заражение) (КЭФМ, 1997; пересмотрено КЭФМ, 1999).
    [Mеждународные стандарты по фитосанитарным мерам МСФМ № 5. Глоссарий фитосанитарных терминов]

    Тематики

    EN

    FR

     

    инфицирование
    контаминация


    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    Синонимы

    EN

    загрязнение (contamination): Нежелательное внесение примесей химического или микробиологического происхождения или постороннего материала в исходный материал, промежуточный продукт или АФС в ходе производства, отбора проб, упаковки или переупаковки, хранения или транспортирования.

    Источник: ГОСТ Р 52249-2009: Правила производства и контроля качества лекарственных средств оригинал документа

    2.6 контаминация (contamination): Наличие загрязнений на оборудовании *.

    * Контаминация также может включать в себя наличие посторонних веществ.

    Источник: ГОСТ Р ЕН 12296-2009: Биотехнология. Оборудование. Методы контроля эффективности очистки

    Англо-русский словарь нормативно-технической терминологии > contamination

  • 16 pollution

    1. загрязнённость
    2. загрязнение (в электробезопасности)
    3. загрязнение

     

    загрязнение
    Привнесение в природную или непосредственно в антропогенную среду или возникновение в ней новых, обычно не характерных для этой среды физических, химических или биологических агентов, или превышение в рассматриваемое время естественного среднемноголетнего уровня в пределах его крайних колебаний концентрации перечисленных агентов в среде, оказывающих вредное воздействие на человека, флору и фауну.
    [РД 01.120.00-КТН-228-06]

    загрязнение
    1 Директива ЕС 96/61/ЕЭС (от 24 сентября 1996 г., касающаяся единых мер предотвращения загрязнения и борьбы с ним, статья 2 (11).
    2 Объединенная группа экспертов ММО/ЮНЕСКО/ВМО/МАГАТЕ/ООН/ЮНПОС по научным аспектам изучения загрязнения морей.
    3 Конвенции о защите морской среды в районе Северо-Восточной Атлантики, Париж, 22 сентября 1992 г., статья 1, п. (d).
    d Конвенция о защите морской среды в районе Балтийского моря, 1992, (Хельсинская конвенция), статья 2, п. 1.
    [ ГОСТ Р ИСО 14050-99]

    Тематики

    EN

     

    загрязнение
    Присутствие инородного вещества: твердого, жидкого или газообразного (ионизированные газы), - которое может вызвать уменьшение диэлектрической прочности или поверхностного сопротивления.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]


    загрязнение
    Любое добавление инородных веществ, твердых, жидких или газообразных (ионизированных газов), которые могли бы уменьшить электрическую прочность изоляции или удельное сопротивление поверхности.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    EN

    pollution
    any condition of foreign matter, solid, liquid or gaseous (ionized gases), that may affect dielectric strength or surface resistivity
    [IEC 60947-1, ed. 5.0 (2007-06)]


    pollution
    any addition of foreign matter, solid, liquid or gaseous that can produce a permanent reduction of dielectric strength or surface resistivity of the insulation
    NOTE – Ionized gases of a temporary nature are not considered as to be a pollution.
    [IEV number 442-01-28]


    contamination
    the first is defined as area and the second as particulate. The first is caused by surface contaminants that cannot be removed by cleaning or are stained after cleaning. Those may be foreign matter on the surface of, for example a localized area that is smudged, stained, discoloured, mottled, etc., or large areas exhibiting a hazy or cloudy appearance resulting from a film of foreign materials
    [IEC 62276, ed. 1.0 (2005-05)]

    FR

    pollution
    tout apport de matériau étranger solide, liquide ou gazeux (gaz ionisés) qui peut entraîner une réduction de la rigidité diélectrique ou de la résistivité de la surface
    [IEC 60947-1, ed. 5.0 (2007-06)]


    pollution
    tout apport de matériau étranger solide, liquide ou gazeux qui peut entraîner une réduction permanente de la rigidité diélectrique ou de la résistivité de surface de l'isolation
    NOTE – Les gaz ionisés de nature fugace ne sont pas considérés comme une pollution.
    [IEV number 442-01-28]


     

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    загрязнённость

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.6.8 загрязнение (pollution): Любое добавление инородных веществ, твердых, жидких или газообразных, которые могли бы уменьшить электрическую прочность изоляции или ее поверхностное удельное сопротивление.

    [МЭК 60664-1, пункт 1.3.11]


    Источник: ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа

    3.5.5 ЗАГРЯЗНЕНИЕ (POLLUTION): Присутствие любого постороннего твердого, жидкого или газообразного (ионизированные газы) материала, который может снизить электрическую прочность диэлектрика или уменьшить поверхностное сопротивление.

    Источник: ГОСТ IEC 61010-031-2011: Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 031. Требования безопасности к щупам электрическим ручным для электрических измерений и испытаний

    3.5.26 загрязнение (pollution): Любая добавка инородного вещества, твердого, жидкого или газообразного (ионизированного газа), которая может повлиять на электрическую прочность изоляции или удельное сопротивление поверхности.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > pollution

  • 17 Randall, Sir John Turton

    SUBJECT AREA: Medical technology
    [br]
    b. 23 March 1905 Newton-le-Willows, Lancashire, England
    d. 16 June 1984 Edinburgh, Scotland
    [br]
    English physicist and biophysicist, primarily known for the development, with Boot of the cavity magnetron.
    [br]
    Following secondary education at Ashton-inMakerfield Grammar School, Randall entered Manchester University to read physics, gaining a first class BSc in 1925 and his MSc in 1926. From 1926 to 1937 he was a research physicist at the General Electric Company (GEC) laboratories, where he worked on luminescent powders, following which he became Warren Research Fellow of the Royal Society at Birmingham University, studying electronic processes in luminescent solids. With the outbreak of the Second World War he became an honorary member of the university staff and transferred to a group working on the development of centrimetric radar. With Boot he was responsible for the development of the cavity magnetron, which had a major impact on the development of radar.
    When Birmingham resumed its atomic research programme in 1943, Randall became a temporary lecturer at the Cavendish Laboratory in Cambridge. The following year he was appointed Professor of Natural Philosophy at the University of St Andrews, but in 1946 he moved again to the Wheatstone Chair of Physics at King's College, London. There his developing interest in biophysical research led to the setting up of a multi-disciplinary group in 1951 to study connective tissues and other biological components, and in 1950– 5 he was joint Editor of Progress in Biophysics. From 1961 until his retirement in 1970 he was Professor of Biophysics at King's College and for most of that time he was also Chairman of the School of Biological Sciences. In addition, for many years he was honorary Director of the Medical Research Council Biophysics Research Unit.
    After he retired he returned to Edinburgh and continued to study biological problems in the university zoology laboratory.
    [br]
    Principal Honours and Distinctions
    Knighted 1962. FRS 1946. FRS Edinburgh 1972. DSc Manchester 1938. Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Society Hughes Medal 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Boot for the cavity magnetron.)
    Bibliography
    1934, Diffraction of X-Rays by Amorphous Solids, Liquids \& Gases (describes his early work).
    1953, editor, Nature \& Structure of Collagen.
    1976, with H.Boot, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (gives an account of the cavity-magnetron development at Birmingham).
    Further Reading
    M.H.F.Wilkins, "John Turton Randall"—Bio-graphical Memoirs of Fellows of the Royal Society, London: Royal Society.
    KF

    Biographical history of technology > Randall, Sir John Turton

См. также в других словарях:

  • The Singularity Is Near — The Singularity Is Near: When Humans Transcend Biology   …   Wikipedia

  • Nature — This article is about the physical universe. For other uses, see Nature (disambiguation). Natural and Natural World redirect here. For other uses, see Natural (disambiguation). See also: Natural environment Hopetoun Falls, Australia …   Wikipedia

  • nature, philosophy of — Introduction       the discipline that investigates substantive issues regarding the actual features of nature as a reality. The discussion here is divided into two parts: the philosophy of physics and the philosophy of biology.       In this… …   Universalium

  • The Mechanical Universe — Infobox Television show name = The Mechanical Universe caption = format = Physics camera = picture format = audio format = runtime = creator = Dr. James F. Blinn developer = producer = executive producer = starring = Dr. David Goodstein narrated …   Wikipedia

  • The War of the Worlds (radio) — The War of the Worlds was an episode of the American radio drama anthology series Mercury Theatre on the Air . It was performed as a Halloween episode of the series on October 30, 1938 and aired over the WABC Radio network. Directed and narrated… …   Wikipedia

  • The Rosicrucian Cosmo-Conception — or Mystic Christianity is a Rosicrucian text, written by Max Heindel (ISBN 0 911274 34 0) Western Wisdom Teachings The first edition was printed in November 1909, it has little changed since then and it is considered to be Max Heindel s magnum… …   Wikipedia

  • The Verifier — refers to a proprietary fuel gauge technology, used for advanced measurement of heating oil in residential and commercial tanks ranging from 1,000 – 20,000 gallons. First developed in 2005, by U.S. Energy Group’s Jerry Pindus, Verifier technology …   Wikipedia

  • Gases nobles — Tubos de descarga conteniendo gases nobles, excitados eléctricamente, mostrando la luz emitida. Los gases nobles son un grupo de eleme …   Wikipedia Español

  • The Great Global Warming Swindle — infobox television caption = DVD cover show name = The Great Global Warming Swindle format = Documentary runtime = 75 mins creator = Martin Durkin country = United Kingdom network = Channel 4, 8 March, 2007 Original run = March 8 2007 website =… …   Wikipedia

  • History of the periodic table — The history of the periodic table reflects over a century of growth in the understanding of chemical properties, and culminates with the publication of the first actual periodic table by Dmitri Mendeleev in 1869.[1] While Mendeleev built upon… …   Wikipedia

  • The Skeptical Environmentalist — Infobox Book name = The Skeptical Environmentalist: Measuring the Real State of the World title orig = Verdens Sande Tilstand translator = image caption = author = Bjørn Lomborg illustrator = cover artist = country = language = series = subject …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»